致力于做对您最有帮助的总结网!总结网欢迎您!
当前位置: >  总结范文 >  教学总结范文 > 内容页

《分数与除法》教学反思

《分数与除法》教学反思(精选15篇)

身为一名刚到岗的教师,我们要在课堂教学中快速成长,通过教学反思可以很好地改正讲课缺点,如何把教学反思做到重点突出呢?下面是小编整理的《分数与除法》教学反思(精选15篇),希望能够帮助到大家!

《分数与除法》教学反思1

本课是引导学生探索并理解分数与除法的关系,并根据分数与除法的关系进一步掌握求一个数是另一个数的几分之几的实际问题的解答方法。在教学时我是从先把四个饼平均分给四个小朋友,每个小朋友可以分得几块?再把三个饼平均分给四个小朋友,每个小朋友分得几块?让学生分别列式。然后引导学生比较两个算式的结果。

学生很自然就发现一个可以得到整数商,一个不能。这时我顺势引导学生:不能得到整数商的可以用什么数表示呢?自然的导出分数。我觉得这样处理,一方面可以让学生真正产生学习的需要,体会到用分数表示的必要性,另一方面也可以让学生初步的感知到分数与除法之间确实是有关系的。这样学生学习的目的明确些,兴趣也高一些。在例题的教学中,学生对分数与除法之间的关系还是比较容易理解的,掌握的.也不错。我重点是强调了单位换算,通过引导学生比较,发现单位间的进率就是分母的结论。学生运用这样的结论进行相关练习时正确率有很大的提高。

《分数与除法》教学反思2

在讲分数的产生时,曾提到计算时往往不能正好得到整数的结果,常用分数来表示,这实际上已经初步涉及分数与除法的关系。教学分数的意义时,讲到把一个物体或一些物体组成的`一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确的点出来,现在学生知道了分数的意义,再来学习分数与除法的关系,使学生初步知道两个整数相除,只要除数不为0,不论被除数小于、等于、大于除数,也不论能否除尽,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲解假分数以及把假分数化为整数或带分数做好了准备。

成功之处:

1、读懂教材编写意图,准确把握每个例题的安排。在例1的教学中是根据整数除法的意义列出算式,根据分数的意义计算结果,使除法计算与分数联系起来。在例2教学中,列式比较容易,但是计算结果相对有些难度,但是对于部分孩子来说,可以得出计算结果,但是为什么学生说不清楚,因此通过学生的动手操作,实际分一分,学生知道了其中的结果,能根据分的结果说出所表示的意义。

2、留给学生充分时间,让学生能够通过不同的方法在合作交流中探索出计算的结果。在操作中出现了以下三种方法:

(1)先把每个圆剪成4个四分之一块,再把12个四分之一平均分给4个人,每个人得到3个四分之一块,也就是分得四分之三块。

(2)把三个圆摞在一起,平均分成四份剪开,得到四分之三块。

(3)先把2个圆摞在一起,平均分成2份,剪成4个二分之一块,分给四个人,每人得到二分之一块,再把1个圆平均分成4份,每人得到四分之一块,最后把二分之一和四分之一合起来,就是每人分得四分之三块。

(4)1块月饼平均分给4个人,每人分得四分之一块,3块月饼平均分给4个人,每人分得3个四分之一块,是四分之三块。

不足之处:

对于除法算式的两层含义,个别学生还是有些混淆。

再教设计:

让学生正确区分分率和实际数量的区别,以便更好的理解分数的意义。

《分数与除法》教学反思3

本节课在学习分数的意义基础上进行教学的。分数的意义是从部分与整体的关系揭示的。分数与除法可以表示两个整数相除(除数不能为0)的`商揭示分数的另一方面的意义,以加深和扩展学生对分数意义的理解,同时为学习假分数以及把假分数化为整数或带分数作准备。

成功之处:

夯实分数的意义的第二种情况。在教学例1时,将除法的意义与分数的意义联系起来。实际上把1个蛋糕平均分给3人,求每人分得几个,就是应用整数除法的意义来列算式,只不过结果是依据分数的意义得出来的。而在例2的教学中,首先通过学生把3块饼平均分给4个小朋友,每个小朋友分几块,也是应用平均分的除法意义列出算式,然后让学生实际分一分,学生通过动手操作得出三种不同的分法:一是把第1个饼平均分成4份,每个小朋友分得1/4块,再把第2、3个饼同样均分,最后每人分得3个1/4块,把它们拼在一起,得到1个饼的3/4;第二种是把3个饼摞在一起,平均分成4份,每个小朋友分得3个饼的1/4,拼在一起就是1个饼的3/4;第三种是把每个饼平均分成4份,一共分了12份,把12份平均分给4个小朋友,每个小朋友分3份,也就是3个1/4份,即3/4块。通过两个例题的教学,明确列式与整数除法的意义相同,在计算时依据被除数÷除数=被除数/除数,

不足之处:

学生在求一个数是另一个数的几分之几时,列式总是出错,被除数和除数容易颠倒。

改进措施:

1、加强求一个数是另一个数的几分之几的列式训练。

2、在教学中还要加强分数意义的两种情况的对比,让学生明确分数不仅表示部分与整体之间的关系,还表示实际数量。

《分数与除法》教学反思4

倒数的学习以及除以一个不为零的数等于乘以这个数的倒数的学习主要是为这一节的学习做准备,在这一节的学习中,找清单位“一”是很重要的内容,能为后续的学习做好铺垫。

在上一次《倒数的认识》的教学中,汲取各位老教师的意见和建议,对这节课的设计及讲解过程进行了适当的调整,力求让学生成为学习的主人,让学生更多的参与到课程中来,成为课程的执行者而不是被动接受者。因此,这一节课,我做出了如下的.调整:

1、能让学生说的问题,就减少我说的机会,比如在分析这道题的时候,先让学生同桌之间互相说,说一说自己在这道题中找到的有效信息有哪些,在请同学们和大家分享自己找到的信息。这一环节,孩子们能在分析已知条件的基础上,将问题所求的内容也作为获取的信息,这个举动对我的鼓舞很大,也更有了放手让学生去做的信心。

2、加强学生之间的沟通与交流。本节课中,除了让学生同桌之间互相讨论外,还设计了两次让学生小组合作交流的机会,让他们互相说一说自己的见解,说的过程其实也是听的过程,孩子们互相讨论,互相说自己的思路和见解,发现自己的思路的优点以及自己思路的弊端,这样让学生们在交流中进步。这种方式也是在老教师的提醒下开始进行改变的,不仅对我是提升,对于学生更是一个很大的提升。

3、一题多解,启发孩子们不要思维定势。这个问题的解决中,我改变了以前一道题只讲一种思路的方式,而是在课堂说,让学生说自己的思路,从而将一题多解以及数形结合的思路渗透给学生。

4、课堂引入不再是直接以复习的方式,而是听取老教师意见,将生动有趣的小故事穿插在其中,这样不仅能吸引孩子们的注意力,还能提高孩子们的学习兴趣,让孩子们的注意力随着小故事的引入而进入课堂。

5、放慢语速,让孩子们紧随我的思路。

6、板书适量,过多的文字并不能得到学生的认可,反而会使得课程显得冗长而累赘。

在以上调整的基础上,本节课相对于上次课而言,有了更好的效果,但是,仍存在很多不足以及需要改进的地方:

1、课堂引入过于生硬,没有很好的完成故事以及课堂的衔接。

2、没有重点强调出单位“一”,对后面的课程讲解会有一定的影响。

3、放手不够,应该让学生有更多的自己说的机会。

4、线段图应多讲解多运用,这样更有利于对问题的理解。以上便是我对这堂课的教学反思,在以后的学习生活中,我会不断的向各位教师学习,不断的反思自己,也希望在以后的道路上,自己不断的进步。

《分数与除法》教学反思5

“分数和除法的关系”主要引导学生探索并理解分数与除法的关系,教材呈现的直观的情境图:把3块饼平均分给4个小朋友,每人分得多少块?分饼的情境,对于五年级的学生来说相当熟悉,不但生活中有,以前的课本知识中也有,生活、学习的经验体会到和以前分饼的问题有相同之处,都是用饼分给一些小朋友,每个小朋友可以分得多少个饼的问题,算式是3÷4=?,有直观的情境图帮助学生思考,有学生知道这个算式的结果是3/4块。借机可以让全体学生直观地体会结果不满1时可以用分数表示,直观帮助学生初步体会分数与除法的关系。

验证“3÷4是否是3/4块,也就是每人分得是3/4块饼吗”是这堂课的难点,操作能帮助学生理解。方法一是一个饼一个饼地分,将第一个饼平均分成4份,每个小朋友分得其中的一份,也就是分得1/4个饼,用同样的方法分别将第二、第三个饼也分,每个小朋友还是分得1/4块饼,三次一共分得3个1/4块饼,合起来是3/4块饼;方法二是三个饼叠在一起分,平均分成4份,每个小朋友分得其中的一份,也就是每人分得3块的1/4,有3个1/4块饼,即3/4块。操作、图像都是直观的.不同手段和形式,同样可以帮助学生理解“3/4块饼”得到的过程,形成丰富、准确的表象。

观察等式3÷4=3/4、3÷5=3/5可以发现分数和除法之间的关系,有了板书的直观支撑,学生很容易知道被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数的分数线;有了板书的直观支撑,学生很容易知道除法与分数的区别,除法是一种四则运算之一,而分数是一种数,相对于自然数、小数而言的另外一种形式的数。在理解、掌握分数与除法关系的基础上,通过练习让学生进一步沟通分数与除法之间的关系,形成相应的技能。如,先将被除数改写成分子,后将除数改写成分母来的比较简单,且不容易出错等等。板书是可以一直留在学生视线中的直观媒体,便于学生反复观察、比较,可以帮助学生获得相应的结论。

情境图、动手操作、直观演示、板书这些形式和手段,可以帮助学生直观地理解知识和运用知识。“试一试”是让学生把低级单位的单名数换算成高级单位的单名数,题目:7分米=()/()米23分=()/()。学生交流中有两种思路,一是运用分数的意义来解决问题的,把1米看做单位“1”平均分成10份,7分米是这样的7份,所以7分米=7/10米;二是低级单位换算成高级单位时,用除以进率的方法解决问题,即7÷10=7/10(米)。运用分数的意义和规律准确完成单位之间的换算,学生在思考时是离不开直观的支撑的。直观是学生理解的基础,直观是沟通知识的桥梁。

《分数与除法》教学反思6

分数与除法的关系的理解与掌握,不但可以加深对分数意义的理解,而且为后面学习假分数、带分数、分数的基本性质以及比、百分数打下基础,所以,分数与除法的关系在整个教材中起到承上启下的重要作用。新课标指出:“学生的教学学习内容应当是现实的,有意义的,富有挑战性的,这些内容要有利于学生主动地进行观察,猜测,验证,推测与交流等教学活动。”这说明创设有效的学习情境,可以引导学生开展“自主,探索,合作”的学习活动,促进学生主动的参与。”所以,在导入新课环节,我有意设计了两道除法计算题:8÷9=

4÷7=

学生一看是这样两道除法算式,都松了口气,说:“这么简单的两道题啊!”于是我在班上开展了男女两组比赛,男生算第一题,女生算第二题。一声令下,男生埋头算起来,思维敏捷的胡雯欣早就知道了答案,根本没有动笔,我示意她不要说出答案。我转了一圈,大部分学生在已经做好的学生的提示下都已经有了答案,只有个别男生还在计算。

汇报后,我引发学生思考:8÷9=0.88……和8÷9=8/9有什么区别?学生最直接的回答是:用循环小数表示没有用分数表示快捷、简便。这个导入使学生明白两个数相除可以用分数来表示商,为进一步学习分数与除法的关系打下基础。

之后,再出示两个数相除的算式,学生都能够很快地用分数来表示商。

以例题中的1÷3=1/3引导学生发现除法中的被除数相当于分数中的分子,除数相当于分数中的分母后,让学生把数字换成它们的名称:被除数÷除数=分子/分母。这时候,我让学生用字母a、b表示除法与分数的关系。薛龙凤上黑板认真地写下:a÷b=a/b,我见这个学生写得很认真,马上表扬了她,并要求学生为她鼓掌。正当大家都为薛龙凤高兴的时候,我在她写的算式后面打了个小小的“×”。学生立刻表示不解,刚刚老师夸了了她,现在怎么又给她判“×”。还是几个思维灵活的先叫起来,说到:“b不能等于0!”我马上抓住这个契机,发问到:“为什么b不能等于0?”班上顿时安静下来,谁也说不上来原因。这个难点马上就要突破了,我心里有点小小的激动。我继续利用例题中的把1块蛋糕平均分给3个人,每人分得这块蛋糕的1/3为例问道:“谁来说说这个分数中的`‘3’表示什么?”有学生举手回答:“把蛋糕看做单位‘1’,‘3’表示把蛋糕平均分成的份数。”“如果把‘3’换成‘0’呢?”学生终于明白:分母表示把单位“1”平均分成的份数,平均分成“0”份就没有意义了。就这个“a÷b=a/b(b≠0)”学生经常会忘记,这里的b要强调不能为0。通过这样分析,学生能够更加深刻地认识到在除法中除数不能为0,而在分数中分母不能为0。

我觉得这个环节我处理的比较好,不是直接告诉学生在除法中除数不能为0,除数相当于分数中的分母,所以分母也不能为0。而是通过分析一个分数的实际意义充分理解分数中的分母表示平均分的份数,自然不能被平均分成“0”份。

成功之处有,不足之处也有。课后反思之,对分数与除法的联系学生理解的比较透彻,但是它们之间还有哪些区别却并没有在课堂上引导学生去发现和归纳。除法表示两个数相除,是一道算式,而分数是一个数。这说明课前我对教材的解读不够深入,还没有把握住知识的整体性和连贯性。在以后的教学中,努力做到对教材的深入理解,同时要多查阅资料,以便对教材知识进行拓展和延伸。

《分数与除法》教学反思7

“数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”。分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:

1、以解决问题入手,感受分数的价值。

从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。

2、分数意义的拓展与除法之间关系的理解同步。

当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。

教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。整节课教学有以下特点:

1、提供丰富的'素材,经历“数学化”过程。

分数与除法关系的理解,是以具体可感的实物、图片为媒介,用动手操作为方式,在丰富的表象的支撑下生成数学知识,是一个不断丰富感性积累,并逐步抽象、建模的过程。在这个过程中,关注了以下几个方面:一是提供丰富数学学习材料,二是在充分使用这些材料的基础上,学生逐步完善自己发现的结论,从文字表达、到文字表示的等式再到用字母表示,经历从复杂到简洁,从生活语言到数学语言的过程,也是经历了一个具体到抽象的过程。

2、问题寓于方法,内容承载思想。

数学学习是一个问题解决的过程,方法自然就寓于其中;学习内容则承载着数学思想。也就是说,数学知识本身仅仅是我们学习数学的一方面,更为重要的是以知识为载体渗透数学思想方法。

就分数与除法而言,笔者以为如果仅仅为得出一个关系式而进行教学,仅仅是抓住了冰山一角而已。实际上,借助于这个知识载体,我们还要关注蕴藏其中的归纳、比较等思想方法,以及如何运用已有知识解决问题的方法,从而提高学生的数学素养。

《分数与除法》教学反思8

本节课是在学生学习了分数除法(一)的内容,即除数是整数的除法的基础上进行教学的。这节课的教学重点是使学生理解一个数除以分数的意义及计算方法,教学难点是使学生理解一个数除以分数的意义和基本算理。

教学中,首先设计了“分一分”活动,从整数除以整数到整数除以分数,借助除法的意义和图形语言,使学生初步体会“除以一个分数”与“乘这个分数的倒数”之间的关系;接下来的“画一画”活动,指导学生利用图示分析数量关系,进一步体会分数除法的意义和算法,体现数形结合的'思想;最后的“填一填,想一想”中,通过对前面问题思考过程的整理,使学生进一步理解分数除法的意义,让学生在观察、比较、分析中发现问题中蕴含的规律。课中采用让学生通过观察、比较与思考,发现知识间的内在联系,主要是教会学生一种学习方法,即分数除法的意义可联系整数除法的意义进行学习。

课上完后,效果并没有我想象中那么好,有许多不尽人意的地方,最主要是时间安排不当,有点前松后紧,致使后面布置的进一步练习没有当堂去做而改成课后完成,造成缺憾。改进方法:在经历知识的形成时,时间应安排紧凑些,增强同桌小组合作的实效性。"画一画"环节可考虑让学生直接在书本上完成。这样也许就不会浪费时间。而整堂课安排更为合理一些,就能让学生更明白学习数学的价值,从而达到教学的目的。其次在学生独立思考或同桌合作交流时,还是发现有部分学生没参与进来,或参与不够。那么在今后教学中无论课中、还是课余都应多加强对这部分学生的关注。

《分数与除法》教学反思9

分数与除法是五年级下册第四单元分数意义中的内容,是建立在除法意义的平均分和把一个物体或多个物体看做单位“1”进行平均分概念的基础上进行教学的。这部分知识加深和扩展了学生对分数意义的理解,同时也为后面讲解假分数以及把假分数化成整数或带分数做好准备。

在本节课的教学中,我首先选择恰当的切入点,从解决简单问题入手,提出了这样几个问题:把6张饼平均分给3个人,每人分到几张饼?把一张饼平均分给2个人,每人分到几张饼?把1张饼平均分给3个人,每人分到几张饼?在此基础上,观察三个算式和得数,得出结论:一张饼的1/3是1/3张饼。为促进学生主动沟通知识间的内在联系做了一个思路引领。

其次充分展现学生的思维过程,以加深学生对知识的理解。我在这里提出了新的问题:如果把3张饼平均分给4位同学,每人分到几张饼?怎样列式?结果每人分到几张饼呢?请同学们借助手中的学具,分一分、拼一拼,看看到底每人分到多少张饼呢?这一问题的解决过程,既是本节课教学的重点,又是学生理解的难点。我让学生亲自动手分一分,拼一拼,并让学生展示分的`过程和分得的结果是怎样的,学生出现了不同的分法和结果。我在这里引导学生展开讨论,使学生在实际操作交流中,对知识的内在联系有了更好的理解。

本节课的教学中,我围绕分饼的方法展开交流,引发学生不断的数学思考,促进学生在动手操作,主动思考中沟通知识间的内在联系,帮助学生不断扩展已有的知识结构,加强了思维深刻性的培养。在教学新课时,学生说的很好,我应该最后再引导学生完整的说出:每人分到这张饼的1/4,3张饼的1/4就是3/4张饼,即3张饼的1/4展开后就是一张饼的3/4。而我在课前的预设中是有这个环节的,结果在教学中,把这个环节落下了。

在今后的教学质量中,应尽量把数学课上的更扎实有效,使学生的数学思维能力和学习能力得到更好的发展和提高。

《分数与除法》教学反思10

“分数与除法”这一教学内容,是人教版小学数学第十册,第四单元中第一小节的内容。在学生学习本课内容之前,已掌握了分数的意义,知道了分数的产生等知识,学完这节课的内容将为今后学习假分数以及假分数化为整数或带分数做好准备。所以让学生很好的掌握分数与除法之间的关系,十分重要。

这节课的教学目标主要有两个,第一,让学生掌握分数与除法的关系,第二,要让学生了解两种分法。让学生体会两种分法的全过程。

在本节课的教学中,我通过从解决简单的问题入手提出了这样几个问题:把6张饼平均分给3个人每人分得几张饼?把1张饼平均分给2个人每人分得几张饼?把1张饼平均分给3个人每人分得几张饼?学生分别口答每人分得2张、0.5张、1/3张。在此基础上引导学生观察三个算式和得数,学生很快得出一个结论:两数相除,商可能是整数、小数或是分数,以此作为本节课的切入点。

让学生明白1张饼的3/4相当于3块饼的1/4是本节课的重点也是难点,我通过让学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个人可以有几种分法,学生通过动手操作,得出两种不同的分法,引申出两种含义,即1张饼的3/4以及3块饼的1/4,同时让学生明白1张饼的3/4相当于3块饼的1/4,也就是3/4张饼。通过这一过程,学生充分理解了3÷4=3/4的算理。

以上这一系列的教学活动,目的是让学生通过动手操作,亲身体验,探究分数与除法的关系,从而激发学生的探究意识,引发学生的数学思考,使学生学会学习、学会思考。

在本节课的'教学当中,我认为存在以下几点不足:

1、课堂上对于学生的兴趣培养、激励性的语言还有些欠缺,学生显得不够积极主动。性格内向的学生占绝大多数,部分学生害怕在众老师面前出错,而显得有些胆怯……由于多方面的原因,道致课堂气氛不够活跃。

2、学生的语言表达能力太差。课堂上不能用较为准确的语言来表述分数与除法的关系,今后应予以加强。

3、教学时间安排欠合理,课堂练习太少。

针对以上存在的几点不足,提出自己今后应努力的方向:

今后要多研读课标,熟读教材,多与学生沟通,了解他们已有的知识水平,认真备课。同时还要不断地学习,提高自己的业务水平和教育教学能力。

《分数与除法》教学反思11

教学分数与除法的关系时学生很是配合,仿佛早已掌握了所有知识点,对于我的提问对答如流,甚至当我给出例题÷4时,全班不假思索不屑一顾的脱口而出四分之三,而当我问出为什么时,他们甚至不愿意去思考,仿佛我问的这个"为什么"简直就是废话中的废话。整个班级躁动不安,是清明假期临的缘故吧。看着即将发怒的老师,孩子们安静下一张张稚气的脸望着我,眼神中带有一丝丝惊恐。我突然想笑,这不就是儿时的自己吗?我沉住气笑着说:明天放假了,看大家很是兴奋吧!孩子们长舒一口气掩面而笑。我接着说:站好最后一班岗的战士才是真正的好战士。同学们心领会神的坐得端端正正。"授人以鱼,不如授人以渔。"我接着说,"大家都知道除以4得四分之三,那除以4为什么等于四分之三呢?四分之三就相当于鱼。而老师想让你得到的是渔,你觉得呢?"果然还是聪明的孩子,轻轻一拨,大部分开始思考了,我和孩子们开始了我铺好的探究之旅。

一、通过操作,感悟算理。

我叫学生拿出前准备好的三个圆,让学生在小组内用自己喜欢的方式验证对除以4这一结果的猜想。孩子们或静下心仔细思考;或把自己手里的圆形折一折、剪一剪;或在本子上画一画、写一写;或同桌小声交流自己的想法。我把想法不同的孩子叫上讲台,在黑板上画出自己的思考过程。并让他们一一介绍。通过学生的操作,得出两种分法,方法(一):把三个圆一个一个分,每次得四分之一,分次,就得个四分之一,就是四分之三张饼。方法(二):把三个圆叠起,平均分成4份,得到张饼的四分之一,也是个四分之一,相当于一张饼的四分之三。不管怎样分,都可以验证÷4用分数四分之三表示结果。还有学生想出了方法(三):除以4得07,07化成分数也是四分之三。通过学生自主操作让其充分理解其中的算理。

二、再次说理,悟出关系。

在学生初步感知分数与除法的关系时,我有意识地把例题改了一下,把块饼平均分给个人,把4块饼平均分给7个人,让学生通过画图或说理,快速的算出它们的商。让学生亲身体会到计算两个整数相除,除不尽或商里面有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。

通过学生自主生成的三道算式,让学生去发现除法与分数之间到底有怎样的关系?并把自己的想法和同桌互相交流。最终学生小结出:除法中的被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。并明确:除法是一种运算,而分数是一种数。

三、对比练习,深化知识。

出示:

把三块饼平均分给7个小朋友,每人分得这些饼的几分之几。

把三块饼平均分给7个小朋友,每人分得几分之几块。

让学生观察这两道题目的区别,一道带单位,一道不带单位。第一道是根据分数的意义把单位"1"平均分成几份,每份就是单位"1"的几分之一,是份数与单位"1"的关系,在数学中我们称为分率,分率不带单位。第二题带单位则表示的是一个具体的.数量,则用总数量除以平均分的份数得到每份的具体数量,得数的单位跟被除数的单位一致。明确:分数有两种含义,一种表示与单位1的关系即分率(不带单位),一种则表示具体的数量(要带单位),为以后学习分数和百分数应用题做好铺垫。

在教学过程中,让学生在自主参与,动手操作、观察比较、交流汇报的基础上去推理和概括,能达到事半功倍的效果。我一直崇尚让学生自己去发现,自己去总结,让学生能学习探究问题的方法,而不是单纯的教授一些解题技巧,因为我知道授生以"渔"永远比授生以"鱼"的重要的多!

《分数与除法》教学反思12

理解与掌握分数与除法的关系及其应用。不但可以加深对分数意义的理解,而且为后面学习假分数,带分数,分数的基本性质以及比,百分数打下基础。所以,分数与除法的关系及应用在整个教材中起到了承上启下的重要作用。执教教师能从整体上把我教材,激励学生积极参与教学活动:问题让学生自己解决;方法让学生自己探索;规律让学生自己发现;知识让学生自己获得;课堂上给了学生充足的思考时间和活动空间,同时学生有了表现自我的机会和成功的体验,培养了学生的自我意识,发挥了学生的主体作用。整个教学过程,结构严谨,层次分明,符合学生的认知规律,是学生独立地发现并应用了“分数与除法的关系”,发展了学生的思维能力,教学效果显著。

新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的.接受式的学习方式,指导建立具有“主动参与,乐于探究,交流合作”特征的多样化的学习方式,从而促进学生知识,技能,情感,态度和价值观的整体发展。因此,教学学习活动应该是一个生动活泼的,主动的,富有个性的过程,教学的教与学的方式,应该是一个充满生命力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即一块饼的,3块饼的,通过这一过程,学生充分理解了“3÷4=”的算理。

探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现教学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,教师让学生充分动手分圆片,让他们在自己的尝试,探究,思考中,不断产生问题,解决问题,在生成新的问题,给学生留足了操作的空间,因此学生对分数与除法的关系理解得比较透彻。

《分数与除法》教学反思13

分数与除法的关系是在分数的意义后进行教学的,使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。但凡教过分数与除法的关系的老师都知道内容很简单,如果单纯地从形式上去教学它们的关系:一个分数的分子当于除法中的`被除数,分母相当于除数,相信学生一定学得很扎实,但这样一来3÷4=的算理往往被忽视,为了让学生知其然且知其所以然,我是这样来组织教学的:

1.通过实际操作感悟新知识、

新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究、交流合作”特征的多样化的学习方式,从而促进学生知识、技能、情感、态度和价值观的整体发展。因此,数学学习活动应该是一个生动活泼的、主动的、富有个性的过程,数学的教与学的方式,应该是一个充满生命活动力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的,3块饼的,通过这一过程,学生充分理解了3÷4=的算理。

2、在问题不断地解决与生成中探索新知识

探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现数学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,我让学生充分动手分圆片,让他们在自己的尝试、探究、猜想、思考中,不断产生问题、解决问题、再生成新的问题,给学生留与了操作的空间,因此学生对分数与除法的关系理解得比较透彻。

《分数与除法》教学反思14

分数与除法的关系的理解与掌握,不但可以加深对分数意义的理解,而且为后面学习假分数、带分数、分数的基本性质以及比、百分数打下基础,所以,分数与除法的关系在整个教材中起到承上启下的重要作用。教师能从整体上把握教材,激励学生积极参与数学活动:问题让学生自己解决,方法让学生自己探索,规律让学生自己发现,知识让学生自己获得。课堂上给了学生充足的思考时间和活动空间,学生有了表现自我的机会和成功的体验,发挥了主体作用。整个教学过程,结构严谨,层次分明,符合学生的认知规律,使学生独立地发现并获得分数与除法的关系,发展了学生的思维能力,达到教学目标,突破了重点和难点。

我在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作,演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力差的学生,在演示说明的时候,叫的学生少,如果能多叫几个学生演示说明,再加上教师的点拨,我想这部分学生在理解上这难点时,就会比较容易。

学生不是理想化的.学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。在教学把3块饼平均给4个人,每人应分多少饼?有很多同学都知道怎样分,但说得不是很明白。我让一个人说了后再请其他同学用数学语言完整的说一遍,这样长时间可以训练学生的用数学语言来表达德能力。而叠在一起分的方法没有出现,我只好亲力亲为了,边演示边说明,但有部分同学不能理解。课后想来,如果我在一块一块的分时,追问一句:这种方法单位一是什么?肯定会有学生想到可以把一块饼看做单位1也可以把三块饼看做单位1啊!也许后面的方法就可以由学生说出来,用他们的语言来表达,他们会更有共鸣,更能理解。在以后的备课中,要把课堂预设充分考虑周全。备课不仅要备教材更要备学生,这样才能真正发挥学生的主体作用。

《分数与除法》教学反思15

本节课是在学生已经建立起除法意义的平均分和把一个物体或多个物体看作单位“1”进行平均分概念的基本上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。 在这节课的教学中,做得比较好的方面是:1.教师能站在一个比较高的角度恰当地选择了教学的切入点,教师从解决简单的问题入手,把6块饼平均分给2人,每人分得几块?把1块饼平均分给2人,每人分得几块?把1个蛋糕平均分给3个人,每人分得多少个?在此基础上引导学生观察3个算式和3个得数,学生很快得出一个结论,两数相除,商可以是整数、小数和分数。在这教师还注意制作课件,说明一块饼的1/3也就是1/3张饼,为促进学生主动沟通知识间的内在联系作了一个很好的思路引领。2.在解决把3块月饼平均分给4个人,每人分的几块?这一重难点问题时,让学生借助学具动手分一分,并让学生充分展示和交流分的过程和分得的结果,充分展示了学生思维过程,加深了学生对知识的理解。

3、注意引发学生的数学思考,促进学生主动沟通了知识间的内在联系,注重数学思维深刻性的培养。在课堂上让学生经历了操作、发现、迁移、归纳,使学生水到渠成的发现、归纳分数与除法的关系,在课堂上实现了师生的交往互动。 我觉得有以下几方面值得我去思考:

一、在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。

二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的.差异,在教学"把3张饼平均分给4个同学,每个同学应分多少张饼?"时,我让学生借助圆形纸片在小组内合作进行分一分,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的同学分;小组的同学分完后,演示汇报时,有很多同学都知道怎么分,但说的不是很明白。在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。

三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。

四、关于“分母不能为0”这个环节,教学中如果能放缓脚步,通过分析一个分数的实际意义,引导学生理解分数中的分母表示平均分的分数,或是启发学生发现在除法中除数不能为0,除数相当于分数中的分母,所以分母不能为0。这样的处理使学生借助已有的知识解决新的问题,效果会更好。

《分数与除法》教学反思16

一、教学内容:分数与除法,教材第65、66页例1和例2

二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。

2.使学生掌握分数与除法的关系。

三、重点难点:1.理解、归纳分数与除法的关系。

2.用除法的意义理解分数的意义。

四、教具准备:圆片、多媒体课件。

五、教学过程:

(一)复习

把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)

(二)导入

(2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)

(三)教学实施

1.学习教材第65 页的例1 。

(1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)

(2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?

( 3)指名让学生把思路告诉大家。

就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数3(1)来表示,这一份就是3(1)块。

老师根据学生回答。(板书:1 ÷ 3 =3(1)块)

(4)如果取了其中的两份,就是拿了多少块?(3(2)块)怎样看出来的?

2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法

3.学习例2 。

( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的`计算结果用分数表示是多少?请同学们用圆片分一分。

老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。

通过演示发现学生有两种分法。

方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个4(1),3 个饼共得到12个4(1), 平均分给4 个学生。每个学生分得3个4(1),合在一起是4(3)块饼。

方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到4(3)块饼,所以每人分得4(3)块。

讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)

( 3 )加深理解。(课件演示)

老师:4(3)块饼表示什么意思:

①把3块饼一块一块的分,每人每次分得4(1)块,分了3次,共分得了3个4(1)块,就是4(3)块。

②把3块饼叠在一块分,分了一次,每人分得3块4(1),就是4(3)块。

现在不看单位名称,再来说说4(3)表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的数。)

( 4 )巩固理解

① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=3(2)(块)

②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)

③从刚才的研究分析,你能直接计算7÷9的结果吗?(9(7))

4.归纳分数与除法的关系。

( l )观察讨论。

请学生观察1÷3 = (块)3÷4 =4(3)(块)讨论除法和分数有怎样的关系?

学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)

用文字表示是:被除数÷除数=

老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。

( 2 )思考。

在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)

( 3 )用字母表示分数与除法的关系。

老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?

老师依据学生的总结板书:a÷b = (b≠0)

明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)

5.巩固练习:

(1)口答:

①7÷13=()(()) 8(5)=( )÷( ) ( )÷24=24(25) 9÷9=()(()) 0.5÷3=3(0.5) n÷m=()(())(m≠0)

②1米的8(3)等于3米的( )

③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。

(2)明辨是非

①一堆苹果分成10份,每份是这堆苹果的10(1) ( )

②1米的4(3)与3米的4(1)一样长。( )

③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的3(1)。( )

④把45个作业本平均分给15个同学,每个同学分得45本的 15(1) 。()(3)动脑筋想一想

①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

(用分数表示)

②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?

《分数与除法》教学反思17

最近一段时间,从分数的乘法到分数的除法,对于单纯的计算方法孩子们脸上似乎没有露出愁色。但是对于一直相伴至今的分数应用题,孩子们理解与区别起来似乎确实比较吃力,各种数量关系确实比较难分析、判断。怎样选择一个合适的解答方法,是孩子们掌握这类应用题的关键,对此,我总结以下几点体会:

  1、一找、二看、三判断

分数应用题的基础题型是简单的分数乘法应用题,要抓住的就是分数乘法的意义:单位“1”×分率=对应量,包括分数除法应用题,仍然使用的是分数乘法的意义来进行分析解答,所以要把这个关系式吃透,同时还要让学生理解什么是分率,什么是对应的量,从中总结出:“一找:找单位“1”;二看:单位“1”是已知还是未知;三:判断已知用乘法,未知用除法。在简单的分数乘法除法应用题中,反复使用这个解答步骤以达到熟练程度,对后面的较复杂分数应用题教学将有相当大的帮助。

2、弄清对应量、对应分数、单位‘1’

教到复杂的分数应用题时,要抓住例题中最具有代表性的也是最难的两种题型加强训练,就是“已知对应量、对应分率、求单位‘1’”和“比一个数多(少)几分之几”这两种题型,对待前者要充分利用线段图的`优势,让学生从意义上明白单位“1”×对应分数=对应量,所以单位“1”=对应量÷对应分数。在训练中牢固掌握这种解题方式,会熟练寻找题中一个已知量也就是“对应量”的对应分数。对于后者,要加强转化训练,要熟练转化“甲比乙多(少)几分之几”变成“甲是乙的1+(或-)几分之几”,对这种转化加强训练后学生就能轻松地从“多(少)几分之几”的关键句中得出“是几分之几”的关键句,从而把较复杂应用题转变成前面所学过的简单应用题。

3、线段图、数量关系、关系转化

(1)画线段图进行分析。对于一些简单的分数应用题,教师要教会学生画线段图,然后引导学生观察线段图,画线段图是强调量在下,率在上。如果单位“1”对应的数量是已知的,就用乘法,找未知数量对应的分率;如果单位“1”对应的数量是未知的,就用方程或除法,找已知数量对应的分率。

(2)找数量关系进行分析。有许多的分数应用题,题目中都有一句关键分率句,教师要引导学生把这一句话翻译成一个等量关系,然后根据这一个数量关系,即可求出题目中的问题,找到解决问题的方向。这一点必须教会给学生。

(3)用按比例分配的方法进行分析。有部分分数应用题,可以把两个数量之间的关系转化为比,然后利用按比例分配的方法进行解答。当然还要鼓励学生学会用多种方法解答。

总之,分数应用题的学习的确有难度,但并非难以理解和接受,我将其以上三点用了六句话进行总结了一下,做分数应用题时,“先找单位1,再看知不知,已知用乘法,未知用除法,比1多加,比1少则减”.所以只要充分了解教材,了解知识结构中前后知识点的关系,这部分的教学会变得比较轻松。

《分数与除法》教学反思18

分数乘除法应用题教学是小学数学中的一个难点,对孩子来讲,内容抽象,数量关系复杂,每年讲到这部分知识,孩子都会出现乘除部分,数量与分率不对应,做题没有思路等等。要突破这个难点,重在理解数量关系,而数量关系中的单位“1”和关系式,又是做题的关键,所以,在学习本节课时,我注意做到了以下几点:

1、突出单位“1”,写好数量关系式

分数除法应用题最重要的是让学生仅仅抓住单位“1”的量,理解用单位“1”的量×对应的分率=对应的数量。不管是分数乘法应用题,还是除法应用题,写关系式,找单位“1”的方法是相同的,所以,每一节课,都出这样的题目,训练写数量关系,并画出线段图,理解题意。

比如:一本故事书,读了3/5,让学生写出两个关系式:一本书×3/5=读了的页数

通过联想,还能写出另外一个关系式:一本书×(1-3/5)=剩下的页数

2、严格做题的'程序

通过几年的教学,我发现很多孩子对分数应用题,都是凭着感觉来做题,没有严格按照程序做题,所以出错非常多。今年从开始学习应用题,我就要求学生严格步骤:一找,找题目中的单位“1”,教给学生找单位“1”的方法。二写,写数量关系式,用单位“1”×对应的分率=对应的数量,关系式必须写成乘法关系式。三、带入数量,看题目中哪个数量给除了,从关系式中替换下来,然后选择适合的方法做。四列式计算,进行解答。

3、教给孩子转化的方法

分数应用题中,比较难的是“比一个数多(少)几分之几”,这样的题目,教给学生两种方法:一种是按照份数做题,找准单位“1”后,明白两个量相对应的分数。从份数方面来解决,另外一种是交给孩子转化的方法,让学生明白比一个数多几分之几,就相等于这个数的一加几分之几的和。明白了这一点,对孩子来讲,也降低了学习的难度。把复杂的分数应用题纳入到了简单的应用题上。

4、教给孩子做题的方法

分数除法应用题,我采用的是列方程的方法来解答,重在让学生理解等量关系。采用数形结合的方法,一边画图,一边用方程理解题意。另外在做题过程中,多种方法题解,让学生全面理解。

其实,不管哪种方法,重在理解,沟通知识之间的内在联系。

《分数与除法》教学反思19

该信息窗呈现的是布艺兴趣小组做蝴蝶结的情境,通过呈现的信息:第一布艺兴趣小组做了8个蝴蝶结,完成了本组计划的2/5。引导学生提出数学问题,从而引出对已知一个数的几分之几是多少,求这个数的实际问题的学习。

这部分内容,是在学生学习了分数除法的计算方法以及解决求一个数的几分之几是多少的实际问题的基础上来学习的。因为分数乘法的意义有了扩展,相应的分数除法的具体含义也有了扩展,从而产生了新的问题,这种问题历来都是教学中的难点,当这种问题与求一个数的几分之几是多少的问题混合在一起时,学生还是不好判断。

以往教材教学这个问题,紧密联系一个数乘分数的意义,先用方程来解答,再直接列式用分数除法来解答。而在本教材中,突出强调了用方程解答这种方法。原因有二,一是减少人为制造学习的困难,二是与初中代数的学习接轨。

教材中的第一个红点标示的问题:第一布艺兴趣小组计划做多少个蝴蝶结?属于同一种量中整体与部分的关系。教材借助线段图来分析数量关系,然后根据一个数乘分数的意义写出等量关系式,列方程解答。对于如何检验,教材则给学生留下了空间,让学生自己想办法检验,这有利于学生养成自我反思、检查的习惯。

教材中第二个红点标示的问题,也是解决已知一个数的几分之几是多少,求这个数的实际问题。与第一个不同的是,涉及到了两种量,同样借助线段图来分析数量关系,在对两种量相比较的同时,联系一个数乘分数的意义列出等量关系式,然后再设未知数列出相应的方程并求解。两个红点部分的共同特点都是求单位“1”。

教材中自主练习设置的内容较多,有对前面计算方法的巩固,也有很多联系实际解决的问题。使用时,教师可根据班级的实际情况及教学需要,调整练习的顺序。

本信息窗建议课时数:2课时。第一课时为新授课,教学信息窗、合作探索及自主练习中的1—3、5、6题,第二课时完成其余练习。必要的话还可以增补题目内容,增加一课时。

对第一课时的教学提出如下建议

教学时,教师可以承接前面信息窗内容的信息,直接出示蝴蝶结情境图中相关的数学信息,然后引导学生提出数学问题。

“合作探索”中第一个红点部分,要首先引导学生分析,寻找学生解决问题的策略,可以有意引导学生画图分析。通过对线段图的分析,使学生找到数量关系式,让学生列式计算。即:根据8个蝴蝶结占计划的2/5,引导学生讨论得出:计划做的个数×2/5=已做的个数。

学生可能出现两种方法:算术法和方程。全班交流时,可让学生谈谈自己这样做的理由。对于含有分数乘法的方程,第一次出现,所以要注意展示求解的过程,并引导学生进行检验。解方程:x×2/5 =8,等号左右两边同时乘5/2相对简捷,如果有学生用这种方法,应该给予鼓励。最后,教师应该让学生理解:列方程解决问题的优势在于未知量参与列式,使思维变成顺向,在遇到“已知一个数的几分这几是多少,求这个数”的问题时,用方程解更简捷。

第二个红点部分,教学的题目与第一个红点部分的区别就在于,第一个红点问题是部分与整体的关系,第二个红点部分是两个量之间的关系,在解决时也可以让学生画出线段图来分析题意,根据一个数乘分数的意义写出等量关系:第一小组的人数×3/4 =第二小组的人数,然后放手让学生列方程独立解决,最后全班交流订正。之后师生共同回顾,解决“已知一个数的几分之几是多少,求这个数”的问题时,需要先找出题中等量关系,然后列方程解答。在整个探索过程中,一要注意引导学生学会分析题目中的数量关系;二要规范解决问题的方式方法。

关于自主练习。

第1、7、10题属于直接计算类题目,其中第7题是混合性的口算,注意引导学生看清、算准;第10题采用方程的形式进行的基本练习,一要关注学生计算的过程,二要注意规范学生的'书写格式。

第4题是一道比较大小的题目。学生已经探索过分数乘法中积与因数的大小关系、分数除法中商与被除数的大小关系,练习时,可先对这些关系在比较中进行回顾,尽量引导学生运用已发现的规律进行判断。交流时,要让学生说清判断的思路,以进一步提高计算的灵活性与快捷性。

第2、3、5、6、8、9、11、12、13、14、15、16、17、18题,都是密切联系实际生活而设置的问题,在学生解决问题的过程中,可根据每道题的内容,对学生进行常识和品德教育。

其中第5题属于信息窗2中所学的旧知;

第13题是分数乘法、分数除法的对比性练习的题目,在学生独立解决之后,应引导学生对前两个问题进行对比,明确两题的解题思路是相同的,即都要分析等量关系,不同的是,已知与未知不同,解答方法也不同。

第14题是分数乘法与除法实际应用中对比的题目。第一小题用除法解答;第二小题用乘法解答。交流时,引导学生说出等量关系,对两个小题进行比较。

第17题是综合应用分数乘除法解决问题的题目,三个问题互相联系。练习时,注意让学生分析等量关系,正确选择乘法或方程解,明确不同解法的特点。

第18题,先要带领学生看明白表格中的已知条件,既要先用方程求出参加投票的总人数,又要根据总人数用乘法求出不满意的人数,还要组织学生提出其他问题,其他问题可不限于分数乘、除法的,可以是加、减法的。

第19题供学有余力的学生选做的题目。可采用假设法,引导学生通过计算把a、b、c表示的是多少分别表示出来,再比较。如:a÷1/4=b÷1=c÷1/13,假设等于1,那么a=1/4 b=1 c=1/13 ,所以b >a >c ;也可以根据除数的大小比较商大小的规律来排序;也可以把“除”转为“乘”即转为a×4=b×1=c×13,通过分析再排序;也可假设a(或b或c)等于一个具体数,分别求出b、c(a、c;a、b)后再排序等等。

《分数与除法》教学反思20

今天执教了一节《分数除法(一)》的数学课的教学。本课是第三单元的起始课,内容涉及到以前整数除法意义的复习,加上本节教学知识点——分数除以整数的意义和方法,设计难度除内容多外且知识抽象,学生不易理解和接受,备起课来难度较大。不过越是有难度的课自己还偏偏有一种想要挑战的心理,毕竟自己迟早是要讲的,而且这样的讲课其实最终目的是为了促进自己教学水平的提高,如果只是为了一节精彩课的展示而有意避重就轻也许恰恰就失去了上课听课评课的本意了。

自知自己对于数学学科的造诣不是很精深,但个人感觉数学课应该要把握住几点:教学语言凝练、具有启发和点拨的作用;流程设计要详略得当、突出重点、分散难点;习题设计体现由浅入深的梯度性;教学覆盖面广,充分发挥学生的积极性和主动性,体现学生的主体地位等等……也许是个性使然,或者是文科味道较浓的教学风格,因此执教较为枯燥乏味的.数学课也很喜欢赋予它一种文质兼美的特点,喜欢让知识性较强的数学课也能带上情感的韵味和兴趣的刺激。尽管事先对于教材进行了一番分析和思考,对于课堂情景和学生进行了预设,尤其是对自己的教学语言也做了格外的注意和设计。但实施起来之后,自己之前最担心的问题还是出现了,由于内容过多,加上课上生成的东西自己也没有做到较为妥当的处理,不可避免的遗憾随之而来,即课堂效果没有预期的理想,学生的学显得不够扎实和深透,自己在教学课件等一些形式的利用上与教学内容的把握上没有达到一个有机的统一。度的失衡使得这节课不免流于形式而略显不实,假如在个别地方善于取舍或是科学的估计四十分钟的教学时间的容量,那么遗憾也许会降到最低程度。

通过今天的讲课,感觉收获很多,要学习的、要改变的、要给予学生的还有很多很多。教学,真的是一门永远探究不完的艺术。即便今天的教学没有任何遗憾,即便学生的表现十分精彩,但我仍然知道,自己距离那种“突破”还有着很长的一段路……。